Exploring Geographic Patterns of Transportation & Logistics Cluster in the USA

Indraneel Kumar, AICP

Chicago Rail Summit 2014, Chicago, June 6th, 2014
Outline

- Motivation
- Literature Review
- Transportation and Logistics Cluster - Current Trends
- Spatial Patterns of Specialization
- Specialization, Jobs, and Transport Infrastructure
- Discussion
Motivation

- Sheffi’s research finds that logistics cluster has a “catalyst role” and is largely resilient to recession shocks (Sheffi, 2012)

- Explore transportation and logistics cluster competitiveness across USA:
 - Can specialization in transport and logistics cluster emerge in micropolitan, non-core, or rural regions?
 - What role transport infrastructure has in explaining specialization and jobs in the cluster?
Literature Review

- Interest in industry cluster strategies emerged during 1990s
- Many studies on popular clusters only a few on logistics cluster
- Defined through inter-industry linkages, IO table, and value chains
- Space as an indicator versus a container (Feser & Sweeney, 2006)
- Public policies have a role in success and acceleration (Porter, 2009 and Rodrigue et al., 2013), logistics in particular (Hayes’, 2006)
- Driver industries comprised of key freight activities are known by different names (Higgins, 2012)
Cluster definition came from a previously funded research by the Economic Development Administration (EDA), 2005-2007
48 industry sectors define the Transportation & Logistics Cluster
Post recession, T & L cluster jobs are recovering

Source: Based on EMSI 2012.4, cluster definition by PCRD
Midwestern metros have increased specialization from 2001-2012

Memphis has the largest LQ, but decreased in specialization from 2001-2012

Source: Based on EMSI 2012.4, cluster definition by PCRD
Specialization Patterns

- Cluster specialization has unique footprints
- At a county level, specialized counties are clustered
- Geographical proximity has some role
- Transportation & Logistics is highly dispersed
- Transportation Equipment is highly concentrated in the Midwest
- Location quotient compares concentration of jobs in a cluster with respect to the national average

Geographical Distribution of LQ, 2010
Global and local autocorrelation indices indicate spatial clustering of high-high and low-low LQ values.

Global Moran’s I of 0.13 has a significant p-value of 0.0002 at 4,999 permutations.

LISA statistics show localized clusters - usual metro areas have spatial concentration so as some of the rural areas.

Getis-Ord, Gi and Gi* show similar patterns.

Some of the mining intensive regions and agricultural areas do emerge as spatial clusters of transport and logistics operations.

LISA and Gi and Gi* gave similar results.
Specialization, Jobs and Transport Infrastructure- 2

- Transportation and logistics LQ and jobs as dependent variables, whereas availability of different modes of transport infrastructure is independent variable.

- Spatial autocorrelation analysis shows some degree of spatial dependence and heteroscedasticity. Spatial regressions are attempted for cross-sectional data.

- First equation is a spatial lag with LQ 2010 as dependent variable and rook first order weight matrix, rail miles per unit area; enplanements per 10,000 jobs; ports per 10,000 jobs; and national highway planning network per unit area came as significant. Overall, a lower R-squared value of 0.12.

\[LQ_{2010} = 0.75 + 0.29W(LQ_{2010}) + 0.73(RAILMILEAR) + 0.0000025(ENP_{2010EMP}) + 0.017(PORT_{10EMP}) - 0.47(NHPNMILEAR) + \varepsilon \]

W is a weight matrix
Specialization, Jobs and Transport Infrastructure- 2

- Second model uses natural log of transportation and logistics jobs as dependent variable and natural log values for infrastructure as explanatory variables.

- Log-transformed, Spatial Lag and Spatial Error model (SARAR specification).

- Explanatory variables include log of (number of airports, number of intermodals, NHPN AADT values, number of ports, and length of rail miles).

- This model has a higher pseudo R-squared value of 0.712.

\[
\ln\text{Jobs2010} = 1.0 + 0.15\ln\text{Jobs2010} + 0.46(\ln\text{Airports}) + 0.58(\ln\text{Intermodal}) + 0.22(\ln\text{NHPNAADT}) + 0.07(\ln\text{Ports}) + 0.18(\ln\text{Railmile}) + \varepsilon
\]

\[
\varepsilon = 0.39W\varepsilon + \mu; W \text{ is a weight matrix}
\]
Discussions

- Transportation and logistics cluster/jobs is present in some of the non-metro areas.
- Railroads came as positive for both the models.
- Density of NHPN came as negative in first model but NHPN AADT, which shows intensity of usage came as positive in the second model.
- Ports and airports variables came as positive for both the models.
- Intermodals came as positive only in the second model.
- Second model seems more intuitive in terms of direction but log coefficients require further investigations.
- Research can be extended by exploring spatial panel datasets.
Authors acknowledge partial support from the EDA University Center Grant for this study

Presented by Indraneel Kumar, ikumar@purdue.edu

Authors of the paper:
Indraneel Kumar, AICP
Andrey Zhalnin, PhD
Lionel J. Beaulieu, PhD

Purdue Center for Regional Development
Purdue University
Gerald D. and Edna E. Mann Hall, Suite 266
203 Martin Jischke Drive
West Lafayette, IN 47907-2057